Relais

Ein mechanisches Relais arbeitet meist nach dem Prinzip des Elektromagneten. Ein Strom in der Erregerspule erzeugt einen magnetischen Fluss durch den ferromagnetischen Kern und einen daran befindlichen, beweglich gelagerten, ebenfalls ferromagnetischen Anker. An einem Luftspalt kommt es zur Krafteinwirkung auf den Anker, wodurch dieser einen oder mehrere Kontakte schaltet. Der Anker wird durch Federkraft in die Ausgangslage zurückversetzt, sobald die Spule nicht mehr erregt ist.

Es gibt verschiedene Arten von Relais, hier werden kurz welche beschrieben:

bistabiles Relais

Diese Relais halten ihre Position, auch wenn der Schaltstrom des Relais abfällt. So bleibt auch im ausgeschalteten Zustand das Relais in seiner Lage

Bistabile Relais sind gekennzeichnet durch ihre Eigenschaft, dass sie im stromlosen Zustand zwei verschiedene stabile Schaltzustände einnehmen können. Zu den bistabilen Relais gehören: Stromstoßrelais (Stromstoßschalter) Stromstoßrelais (in der Elektroinstallationstechnik auch als Stromstoßschalter bezeichnet) schalten bei einem Stromimpuls in den jeweils anderen Schaltzustand um und behalten diesen bis zum nächsten Impuls bei. Das Beibehalten des Zustandes wird durch eine mechanische Verriegelung gewährleistet. Haftrelais Haftrelais, auch als Remanenzrelais bezeichnet, nutzen die Remanenz, um nach Abschalten des Erregerstromes weiterhin im angezogenen Zustand zu verbleiben. Zum Umschalten in den anderen Schaltzustand ist entweder an einer zweiten Wicklung mit umgekehrtem Wicklungssinn eine Spannung gleicher Polarität anzulegen (Doppelspulenrelais), oder bei Haftrelais mit nur einer Wicklung eine Spannung an diese mit entgegengesetzter Polarität. Stützrelais Stützrelais werden mechanisch in der angesteuerten Position verriegelt. Zum Umschalten in den anderen Schaltzustand ist entweder an einer zweiten Wicklung mit umgekehrtem Wicklungssinn eine Spannung gleicher Polarität anzulegen (Doppelspulenrelais), oder bei Relais mit nur einer Wicklung eine Spannung an diese mit entgegengesetzter Polarität. Stützrelais werden häufig zur Speicherung von Zuständen auch bei Stromausfällen sowie zum Stromsparen bei lange unveränderten Schaltvorgängen eingesetzt. Doppelspulenrelais bei der Modelleisenbahn Bei der Modelleisenbahn werden auch Doppelspulrelais eingesetzt. Diese nutzen üblicherweise keine Remanenz und sie werden auch nicht mechanisch verriegelt. Diese Doppelspulenrelais haben oft eine Endabschaltung. Die Endabschaltung verhindert eine Überhitzung von unterdimensionierten Spulen, die sonst bei Dauerbelastung durchbrennen würden. Solche Doppelspulenrelais werden unter anderem zur Steuerung von Signalen verwendet.

Wechsler

Text folgt…

Halbleiterrelais

Halbleiterrelais (engl. solid state relay, SSR, daher eingedeutscht auch Solid-State-Relais genannt) sind keine eigentlichen Relais. Vielmehr handelt es sich um elektronische Bauelemente, die – auf Grundlage ganz anderer physikalischer Prozesse – den Ein- / Ausschalteffekt realisieren. Halbleiterrelais werden mit Transistoren oder Thyristoren beziehungsweise Triacs realisiert. Sie arbeiten ohne bewegte Teile, sind daher sehr langlebig und für hohe Schalthäufigkeit und ungünstige Umweltbedingungen (wie Umgebungen mit explosiven Gasgemischen) geeignet.

Mit Halbleiterrelais besteht die Möglichkeit, Wechselspannung während des Nulldurchganges zu schalten, womit störende Impulse vermieden werden können. Eine galvanische Trennung zwischen Steuerkreis und Lastkreis wird bei Halbleiterrelais durch im Bauteil integrierte Optokoppler erreicht. Halbleiterrelais haben gegenüber mechanischen Relais höhere Verluste im Laststrompfad und müssen daher oft auf einen Kühlkörper montiert werden. Außerdem gibt es Halbleiterrelais, die im Scheitel der Netzspannung oder sofort beim Ansteuern, also momentan schalten. Scheitelschalter werden eingesetzt zum Schalten von Induktivitäten, die keine oder nur eine geringe Restmagnetisierung haben und damit keine Hysterese aufweisen.

Eine Sonderstellung nehmen so genannte OptoMOS- bzw. PhotoMOS-Relais ein, da sie im Aufbau Optokopplern ähneln: Sie arbeiten steuerungsseitig wie ein Optokoppler mit einer Infrarot-LED und besitzen lastseitig im Unterschied zu den zuvor beschriebenen Halbleiterrelais keine Triacs oder Thyristoren, sondern MOSFETs, mit denen sie Gleich- und Wechselspannungen bei typischerweise eher geringem Strom schalten können. Sie müssen nicht gekühlt werden und besitzen bei geringem Laststrom einen geringeren Spannungsabfall als Halbleiterrelais, zeigen typischerweise jedoch einen höheren „Kontaktwiderstand“ als mechanische Signalrelais. Sie arbeiten prell- und verschleißfrei sowie mit hohen Schaltgeschwindigkeiten (einige Mikrosekunden), die bei Spezialausführungen Schaltfrequenzen bis zu 100 kHz erreichen können.

Vorteile

  • Kleine Abmessungen
  • Geringe Koppelkapazitäten zwischen Ein- und Ausgang
  • Keine Induktivitäten
  • Geringere Verzögerungszeiten des Ausgangssignals
  • Kein Kontaktprellen
  • Kein mechanischer Verschleiß, daher sehr viele Schaltzyklen möglich
  • Keine Störung durch Magnetfelder

Nachteile

  • Höhere Spannungsabfälle im Ausgangskreis als bei Relais
  • Nur eine Stromrichtung im Ausgangskreis möglich (außer bei Triac- und PhotoMOS-Empfänger)
  • Sendediode erfordert externen Vorwiderstand (Ausnahme: Solid-State-Relais)
  • Ein- und Ausgangskreis sind im Vergleich zu Relais empfindlicher gegenüber Überlast und Störimpulsen

Kleinrelais

Zu dem etwas unklar abgegrenzten Begriff Kleinrelais gehören eine Vielzahl meist im Niederspannungsbereich eingesetzte Relais, die oft zum Einbau auf Leiterplatten vorgesehen sind („Printrelais“). Weitere Beispiele sind DIL-Relais, kammgeführte Relais oder SMD-Miniaturrelais.